Brigatinib Versus Crizotinib in ALK Inhibitor-Naive Advanced ALK-Positive NSCLC: Final Results of Phase 3 ALTA-1L Trial

D. Ross Camidge, MD, PhD,^{a,*} Hye Ryun Kim, MD, PhD,^b Myung-Ju Ahn, MD, PhD,^c James C. H. Yang, MD, PhD,^d Ji-Youn Han, MD, PhD,^e Maximilian J. Hochmair, MD,^f Ki Hyeong Lee, MD, PhD,^g Angelo Delmonte, MD, PhD,^h Maria Rosario Garcia Campelo, MD,ⁱ Dong-Wan Kim, MD, PhD,^j Frank Griesinger, MD, PhD,^k Enriqueta Felip, MD, PhD,^l Raffaele Califano, MD,^{m,n} Alexander I. Spira, MD,^o Scott N. Gettinger, MD,^P Marcello Tiseo, MD,^q Huamao M. Lin, PhD,^r Yuyin Liu, PhD,^s Florin Vranceanu, MD, PhD,^t Huifeng Niu, PhD,^u Pingkuan Zhang, MD,^v Sanjay Popat, BSc, PhD, FRC^w

^aDepartment of Medicine, University of Colorado Cancer Center, Aurora, Colorado ^bDivision of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea ^cDivision of Hematology-Oncology, Samsung Medical Center, Seoul, South Korea

Presenter – Dr. Uma Dangi

Consultant Medical Oncology, Fortis hospitals, Mumbai

Brigatinib vs Crizotinib in ALKi-Naive Patients With Advanced ALK-Positive NSCLC (ALTA-1L): Background

- In patients with ALK-positive NSCLC, phase III PROFILE 1014 trial demonstrated significantly superior median PFS with first-line crizotinib vs platinum—pemetrexed doublet CT (10.9 vs 7.0 mos; P < .001)^[1]
- Brigatinib: next-generation ALK/ROS1 inhibitor
 - Activity reported against ALK inhibitor-resistance mutations and EGFR mutations in in vitro and mouse models^[2,3]
- Phase I/II trials evaluating brigatinib after crizotinib treatment have reported high rates of response systemically and in the CNS with a prolonged median PFS of ~ 16 mos^[4,5]
- This article reports the final efficacy, safety, and exploratory results of the study

1. Solomon BJ, et al. N Engl J Med. 2014;371:216 7-2177. 2. Uchibori K, et al. Nat Commun. 2017;8:14768.

3. Huang WS, et al. J Med Chem. 2016;59:4948-4964. 4. Huber RM, et al. ASCO 2018. Abstract 9061.

5. Camidge DR, et al. J Clin Oncol. 2018;36:2693-2701.

Brigatinib Exhibits a Pan-Inhibitory Preclinical Profile Against ALK Resistance Mutants

- Brigatinib overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models¹
 - Potently inhibited all ALK resistance mutations tested, including G1202R, at clinically achievable levels
 - Significantly prolonged survival and reduced tumor burden in an ALK-dependent orthotopic brain tumor model in mice
- Brigatinib yielded promising clinical activity in crizotinib-treated ALK+ NSCLC patients in a phase 1/2 study²

(1) Zhang, et al. Cancer Res. 2015;75(15 suppl):abstract 781.
(2) Camidge, et al. J Clin Oncol. 2015;33(suppl):abstract 8062.
(3) Katayama, et al. Clin Cancer Res. 2015;21:2227-35.
(4) Friboulet, et al. Cancer Discov. 2014;4:662-73.

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.

Effective Average Concentration (C _{ave}) in Patients*				
Exceeds IC ₅₀ by at Least 2-fold			No	
-				
	TKI Activity, IC ₅₀ (nM)			
ALK Variant	Crizotinib	Ceritinib	Alectinib	Brigatinib
Native	107	37	25	14
T1151Tins	1109 [†]	283	201	114
L1152R	844†	437†	62	11
L1152P	721	451	48	20
C1156Y	529 [†]	195	67	45
I1171N	532 [†]	119	724†	124
F1174C	238	109†	31	58
F1174L	253†	117	44	55
F1174V	257†	121†	46	64
V1180L	170	16	597	11
L1196M	5 89 [†]	67	133	41
L1198F	17	697	84	82
G1202R	617†	354†	695†	184
D1203N	45 9 [†]	159	42	79
S1206F	199†	39	34	43
S1206Y	179†	42	19	36
E1210K	240	80	59	107
G1269A	509 [†]	29	56	9

*Effective C_{ave} at steady-state concentrations at approved/recommended phase 2 doses (180 mg for brigatinib) corrected for functional effects of protein binding; [†]ALK mutations previously associated with clinical resistance^{3,4}

Adapted from Zhang, et al. Poster presented at AACR Annual Meeting, April 18-22, 2015, Philadelphia, PA, Abstract 781.

Brigatinib Pivotal Randomized Phase 2 Trial Presented by: Dr. Dong-Wan Kim

Presented By Dong-Wan Kim at 2016 ASCO Annual Meeting

ALTA-1L: Study Design

Final analysis of multicenter, randomized, open-label phase III trial

Stratified by BL brain mets (yes/no), prior CT for locally advanced or metastatic disease (yes/no)

- Primary endpoint: BIRC-assessed PFS (RECIST v1.1)
- Secondary endpoints: ORR, intracranial ORR, intracranial PFS, OS, DoR safety and QOL
- Exploratory end points: BIRC-assessed PFS and ORR in patients crossing over to brigatinib after PD on crizotinib, Molecular determinants (ALK-EML4 fusion variant and TP53 mutation status) of efficacy and emerging mutations over time

Journal of Thoracic Oncology Vol. 16 No. Slide credit: clinicaloptions.com

ALTA-1L: Baseline Characteristics

Characteristic, %	Brigatinib (n = 137)	Crizotinib (n = 138)	All Patients (N = 275)
Median age, yrs (range)	58 (27–86)	60 (29–89)	59 (27–89)
Female sex	50	59	55
Race White Asian Other	55 43 1	62 36 2	59 39 2
ECOG PS • 0 • 1 • 2	42 53 4	43 52 4	43 53 4
Disease stage at study entry IIIB IV	6 94	9 91	7 93

Characteristic, %	Brigatinib (n = 137)	Crizotinib (n = 138)	All Patients (N = 275)
Locally assessed <i>ALK</i> status per FDA-approved test	90	81	86
Brain mets	29	30	29
Prior RT to brain	13	14	13
Prior CT in locally advanced or metastatic setting	26	27	27

- Continuing on study treatment: brigatinib, n = 58 (42%); crizotinib, n = 16 (12%)
 - Median follow-up: brigatinib, 40.0 mos; crizotinib, 15.2 mos
 - 65 patients crossed over to brigatinib after d/c crizotinib due to PD

Journal of Thoracic Oncology Vol. 16 No. Slide credit: clinicaloptions.com

ALTA-1L: BIRC-Assessed PFS (Primary Endpoint)

ALTA-1L: BIRC-Assessed PFS by Prespecified Subgroup

С

Subgroup	No. of Patients Brigatinib/Crizotinib		HR for Disease Progression or Death (95% CI)	
Overall		137/138	•	0.48 (0.35-0.66)
Age	18 to 64 years ≥65 years	93/95 44/43		0.42 (0.29—0.63) 0.58 (0.33—1.01)
Sex	Female Male	69/81 68/57	-	0.47 (0.30 — 0.73) 0.48 (0.30 — 0.75)
Race	Non-Asian Asian	78/89 59/49		0.56 (0.38 — 0.84) 0.35 (0.20 — 0.59)
Smoking status ^a	Never smoker Former smoker	84/75 50/56	-	0.43 (0.28 — 0.65) 0.48 (0.29 — 0.80)
ECOG perfomance status ^b	0 1	54/53 76/78		0.25 (0.13—0.48) 0.54 (0.37—0.79)
Brain metastases at baseline ^c	Yes No	40/41 97/97		0.25 (0.14 — 0.46) 0.62 (0.43 — 0.91)
Prior chemotherapy ⁴	Yes No	36/37 101/101	0.0 0.5 1.0	0.45 (0.24 — 0.83) 0.50 (0.35 — 0.73) 0 1.5 2.0

Brigatinib Better Crizotinib Better

ALTA-1L: BIRC-Assessed Intra cranial PFS

Ε

F

Figure 1. Continued.

ALTA 1L – Overall survival

ALTA 1L – Overall survival

Exploratory analyses: OS by molecular variant and TP53

Global QOL and functional scores

- The median time to worsening in GHS/QoL for
 - Brigatinib was 26.7 months
 - Crizotinib was 8.3 months
 - (HR= 0.69, 95% CI: 0.49– 0.98, log-rank p = 0.047)

ALTA-1L: Safety

ILD/pneumonitis:

- Brigatinib, 6%; crizotinib, 2%
- In brigatinib arm, 3% observed within 14 days of starting treatment
- Grade 3 or higher 3% and <1% patients, respectively.
- Patients crossing over to
 Brigatinib from Crizotinib 6%
 had ILD or pneumonitis with
 2% having grade 3

Patients with >1 event n (%)	Brigatinib $(n = 136)$	Crizotinih (n = 137)
Openiow of adverse events	brigacinib (ii = 150)	
Any grade adverse events	126 (100)	137 (100)
Any-grade adverse event	05 (70)	77 (56)
Adverse events leading to death (grade 5)	95 (70)	11 (8)
Treatment related	0	(6)
Adverse event leading to treatment discontinuation	U 18 (12)	0
Adverse event leading to dese reduction	10 (13) 60 (44)	12 (7)
Adverse event leading to dose reduction	98 (72)	54 (ZJ) 65 (47)
Grade ≥ 3 adverse events reported in $\geq 2\%$ of patients in either	70 (72)	85 (47)
Blood creating phosphokingse increased ^a	36 (26)	2 (1)
Lipse increased ^b	21 (15)	11 (8)
Hypertension	19 (14)	6 (4)
Amylase increased ^b	8 (6)	2 (1)
Pneumonia	7 (5)	5 (4)
Alanine aminotransferase increased	6 (4)	14 (10)
Aspartate aminotransferase increased	6 (4)	9 (7)
Neoplasm progression	4 (3)	4 (3)
Anemia	4 (3)	1 (1)
Blood alkaline phosphatase increased	4 (3)	1 (1)
Dyspnea	3 (2)	6 (4)
Pulmonary embolism	3 (2)	5 (4)
Diarrhea	3 (2)	4 (3)
Nausea	3 (2)	4 (3)
Hypophosphatemia	3 (2)	3 (2)
Gamma-glutamyl transferase increased	3 (2)	3 (2)
Headache	3 (2)	0
Neutropenia	2 (1)	4 (3)
Pleural effusion	2 (1)	3 (2)
Vomiting	2 (1)	3 (2)
Neutrophil count decreased	1 (1)	7 (5)
Decreased appetite	1 (1)	4 (3)
Urinary tract infection	1 (1)	3 (2)
Upper abdominal pain	1 (1)	3 (2)
Noncardiac chest pain	0	3 (2)

ALTA-1L: Conclusions

- In ALK inhibitor—naive patients with ALK-positive NSCLC, final analysis confirmed significantly improved PFS with brigatinib vs crizotinib
 - Median PFS: 24 vs 11.1 mos (HR: 0.48; log-rank P = <0.0001)</p>
 - PFS benefit observed across most subgroups except those aged 65 yrs or older
 - Intracranial PFS was better in patients receiving Brigatinib, including those with BL brain metastases (31% vs 9%; log-rank p < 0.0001)and ITT (57% vs. 38%)
- No clear pattern of emerging mutations was identified in patients who progressed on brigatinib
- More treatment discontinuations and dose interruptions were noted with Brigatinib
- Investigators concluded that brigatinib a promising first-line treatment option for patients with ALK-positive NSCLC especially for those with brain metastases at baseline

Thank you